

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMbH

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Bakteriologische Analyse Prot. Nr. 2508140-03

Entnahmestelle:	Auslauf Volks- u. Hauptschule Promenade					
Auftraggeber:	Energie Ried Gesm	Energie Ried GesmbH Kellergasse 10, 4910 Ried im Innkreis				
Anlagenbezeichnung:	Wasserversorgung	Wasserversorgung Energie Ried, Kellergasse 10, 4910 Ried im Innkreis				
Protokoll Nr.:	2508140-03	2508140-03 Entnahmestellen Nr.: 05				
Entnommen am:	01.09.2025 13:04	Entnommen von:	ITU Puttinger Nicole			
Eingegangen am:	01.09.2025 13:29	Auftrag:	Untersuchung gem. TWVO			
Beginn Analyse:	01.09.2025 14:03					
Analysenumfang:	Volluntersuchung - ohne Richtdosis/Tritium/Radon					

Misch- oder Wechselwasser:		Nein
Lässt Rückschluss auf die Besc	haffenheit beim Verbraucher zu:	Ja
Lässt Rückschluss auf die Grundwasserbeschaffenheit zu:		Nein
Wasseraufbereitungsverfahren:	UV-Desinfektion	
Probenahmeverfahren:	ÖNORM EN ISO 19458:2006, Zweck a	

Parameter	Einheit	Parameterwert/ Indikatorenwert	Messwert	Methode
Aussehen (vor Ort)			ohne Besonderheit	ÖNORM M 6620:2012
Geruch (vor Ort)			ohne Besonderheiten	ÖNORM M 6620:2012
Geschmack (vor Ort)			ohne Besonderheiten	ÖNORM M 6620:2012
Koloniezahl bei 22°C	KBE/ml	100	nicht nachweisbar	ÖNORM EN ISO 6222:1999
Koloniezahl bei 36°C	KBE/ml	20	nicht nachweisbar	ÖNORM EN ISO 6222:1999
Escherichia coli	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 9308-1:2017
Coliforme Bakterien	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 9308-1:2017
Enterokokken	KBE/100ml	nicht nachweisbar	nicht nachweisbar	DIN EN ISO 7899-2:2000
Pseudomonas aeruginosa	KBE/100ml	nicht nachweisbar	nicht nachweisbar	ÖNORM EN ISO 16266:2008

Allgemeine Hinweise:

- KBE = Koloniebildende Einheiten
- Parameterwert entspricht It. Trinkwasserverordnung einem Grenzwert, der Indikatorwert entspricht einem Richtwert,

- "nicht nachweisbar" entspricht der Bestimmungsgrenze kleiner gleich 4 KBE

- Ein allfällig zum Einsatz kommender Probenahmeplan wird gemäß DOK_Probenahmepläne umgesetzt.
- Die Beurteilung der Ergebnisse bezieht sich nur auf die vorliegenden Parameter. Eine Vervielfältigung ist nur mit Zustimmung der Prüf- und Inspektionsstelle erlaubt.
- Für überbrachte Proben gilt, dass die Proben wie erhalten analysiert werden. Für Herkunft, Probenahme, Konservierung und Transport der Proben wird in diesen Fällen keine Haftung übernommen.

 - Messunsicherheit: es wird gemäß ILAC G8 4.2.1 die binäre Entscheidungsregel angewendet.

KBE bei 22 °C/36 °C: Bei desinfiziertem Wasser unmittelbar nach Desinfektion (UV, Chlor, Ozon) gilt abweichend zu oben angegebenem Indikatorwert: 10 KBE/ml bei 22 °C und 36 °C

Die Bestätigung von Pseudomonas aeruginosa kann auch laut "AA Pseudomonas" beim akkreditierten Partnerlabor Institut für klinische Pathologie, Mikrobiologie und molekulare Diagnostik, Schlossberg 1, 4910 Ried im Innkreis (Vinzenz Pathologieverbund GmbH) erfolgen.

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMBH

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Entnahmestelle:	Auslauf Volks- u.	Auslauf Volks- u. Hauptschule Promenade				
Auftraggeber:	Energie Ried Gesmi	Energie Ried GesmbH Kellergasse 10, 4910 Ried im Innkreis				
Anlagenbezeichnung:	Wasserversorgung	Wasserversorgung Energie Ried, Kellergasse 10, 4910 Ried im Innkreis				
Protokoli Nr.:	2508140-03	2508140-03 Entnahmestellen Nr.: 05				
Entnommen am:	01.09.2025 13:04	Entnommen von:	ITU Puttinger Nicole			
Eingegangen am:	01.09.2025 13:29	Auftrag:	Untersuchung gem. TWVO			
Beginn Analyse:	01.09.2025 12:48	01.09.2025 12:48				
Analysenumfang	Volluntersuchung - ohne Richtdosis/Tritium/Radon					

Misch- oder Wechselwasser:		Nein	
Lässt Rückschluss auf die Beschaffenheit beim Verbraucher zu:			
Lässt Rückschluss auf die Grundwasserbeschaffenheit zu:			
Wasseraufbereitungsverfahren:	sseraufbereitungsverfahren: UV-Desinfektion		
Probenahmeverfahren:	ÖNORM ISO 5667-5:2015		

Parameter	Einheit	Parameterwert/ Indikatorenwert	Messwert	Methode
Wassertemperatur (vor Ort)	°C	25	18,0	ÖNORM M 6616:1994
pH-Wert (vor Ort)		6,5 - 9,5	7,4	ÖNORM EN ISO 10523:2012
Elektrische Leitfähigkeit bei 20°C (vor Ort)	μS/cm	2500	572	DIN EN 27888:1993
Säurekapazität bis pH 4,3	mmol/I	-	6,01	DIN 38409-7:2005 *
Gesamthärte (Wasserhärte)	°dH	-	19,1	DIN 38409-6:1996 *
Gesamthärte	mmol/l	-	3,41	DIN 38409-6:1996 *
Carbonathärte	°dH	-	16,8	DIN 38409-7:2005 *
Hydrogencarbonat	mg/l	-	367	DIN 38409-7:2005 *
Oxidierbarkeit Permanganatindex O2	mg/l	5,0	<0,50	ÖNORM EN ISO 8467:1996
Ammonium	mg/l	0,50	<0,05	DIN 38406-5:1983
Nitrit	mg/l	0,1	<0,013	ÖNROM EN 26777:1993
Nitrat	mg/l	50	14,2	DIN EN ISO 10304-1:2009 *
Natrium	mg/l	200	3,0	DIN EN ISO 14911:1999 *
Kalium	mg/l	50	1,43	DIN EN ISO 14911:1999 *
Magnesium	mg/l	150	22	DIN EN ISO 14911:1999 *
Calcium	mg/l	400	100	DIN EN ISO 14911:1999 *
Eisen	mg/l	0,2	<0,027	DIN 38406-1:1983
Mangan	mg/l	0,05	<0,010	DIN 38406-2:1983
Chlorid	mg/l	200	9,9	DIN EN ISO 10304-1:2009 *
Sulfat	mg/l	250	27	DIN EN ISO 10304-1:2009 *
Spektrales Absorptionsmaß bei 436 nm	m-1	0,50	<0,1	EN ISO 7887:2011 ~
Trübung 1	NTU	1,0	<0,1	EN ISO 7027-1:2016 ~
Cyanid, gesamt	μg/l	50	<10	ÖNORM M 6287:1989 ~

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMBH

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Bromat	µg/l	10	<0,003	EN ISO 15061:2001 ~
Aluminium	mg/l	0,20	<0,05	EN ISO 11885:2009 ~
Fluorid	mg/l	1,5	<0,3	EN ISO 10304-1:2009 ~
Arsen	μg/l	10	4,27	EN ISO 17294-2:2016 ~
Antimon	μg/l	5,0	<2	EN ISO 17294-2:2016 ~
Blei	μg/l	10	<2	EN ISO 17294-2:2016 ~
Bor	mg/l	1,0	<0,05	EN ISO 17294-2:2016 ~
Cadmium	μg/l	5,0	<1	EN ISO 17294-2:2016 ~
Chrom	μg/l	50	<5	EN ISO 17294-2:2016 ~
Kupfer	mg/l	2,0	<0,005	EN ISO 17294-2:2016 ~
Nickel	μg/l	20	<5	EN ISO 17294-2:2016 ~
Quecksilber	μg/l	1,0	<0,2	EN ISO 17294-2:2016 ~
Selen	μg/l	10	<2	EN ISO 17294-2:2016 ~
Uran	μg/l	15	1,61	EN ISO 17294-2:2016 ~
Benzol	μg/l	1,0	<0,3	DIN 38407-43:2014 ~
Acrylamid	µg/l	0,10	<0,050	DIN 38413-6 ^
Epichlorhydrin	μg/l	0,10	<0,050	DIN EN ISO 15680 ^
Vinylchlorid	μg/l	0,50	<0,15	DIN 38407-43:2014 ~
1,2-Dichlorethan	μg/l	3,0	<0,2	DIN 38407-43:2014 ~
SummeTetrachlorethen und Trichlorethen	µg/l	10	<0,3	DIN 38407-43:2014 ~
Tetrachlorethen	μg/l		<0,3	DIN 38407-43:2014 ~
Trichlorethen	μg/l		<0,3	DIN 38407-43:2014 ~
Summe Trihalomethane	µg/l	30	<0,3	DIN 38407-43:2014 ~
Trichlormethan/Chloroform	μg/l		<0,3	DIN 38407-43:2014 ~
Bromdichlormethan	μg/l		<0,3	DIN 38407-43:2014 ~
Dibromchlormethan	μg/l		<0,3	DIN 38407-43:2014 ~
Tribrommethan/Bromoform	μg/l	eu an	<0,3	DIN 38407-43:2014 ~
Benzo(a)pyren	μg/L	0,010	<0,003	DIN 38407-39:2011 ~
Benzo(b)fluoranthen	μg/L	-	<0,005	DIN 38407-39:2011 ~
Benzo(k)fluoranthen	μg/L		<0,005	DIN 38407-39:2011 ~
Benzo(ghi)perylen	μg/L		<0,005	DIN 38407-39:2011 ~
Inden(1,2,3-cd)pyren	μg/L		<0,005	DIN 38407-39:2011 ~
Summe PAK gemäß TWV	µg/L	0,10	<0,005	DIN 38407-39:2011 ~
(2,4-Dichlorphenoxy)-essigsäure(2,4-D einschließlich ihrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Alachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Aldrin	µg/l	0,03	<0,009	EN ISO 6468:1996 ~
Atrazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Azoxystrobin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Bentazon	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Bromacil	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Chloridazon	µg/l	0,10	<0,03	DIN 38407-36:2014 ~

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMbH

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Clopyralid	μg/i	0,10	<0,03	DIN 38407-35:2010 ~
Clothianidin	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
2-(2,4-Dichlorphenoxy)-propionsäure (Dichlorprop, 2,4-DP) einschließlich ihrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dimethenamid-P	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dicamba	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dieldrin	μg/L	0,03	<0,009	EN ISO 6468:1996 ~
Diuron	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Ethofumesat	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Flufenacet	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Gluphosinat	µg/l	0,10	<0,03	ISO 21458:2008 ~
Glyphosat	µg/i	0,10	<0,03	ISO 21458:2008 ~
Heptachlor	μg/l	0,03	<0,009	EN ISO 6468:1996 ~
Heptachlorepoxid	µg/L	0,03	<0,009	EN ISO 6468:1996 ~
Hexazinon	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Imidacloprid	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
odsulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
soproturon	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
(4-Chlor-2-methylphenoxy)-essigsäure (MCPA) einschließlich ihrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
4-(4-Chlor-2-methylphenoxy)-buttersäu (MCPB) einschließlich ihrer Salze und Ester	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
2-(4-Chlor-2-methylphenoxy)-propions (Mecoprop, MCPP) einschließlich hrer Salze und Ester	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Mesosulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metalaxyi-M	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metamitron	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metazachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metolachlor	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metribuzin etribuzin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Metsulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Nicosulfuron	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Pethoxamid	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Propazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Propiconazol	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Simazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Thiacloprid Thiacloprid	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Thiamethoxam	µg/l	0,10	<0,03	DIN 38407-36:2014 ~

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMbH

DR. MED. MILO HALABI

MAG. MAG. RER. NAT. FRANZ ZWINGLER

Thifensulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tolylfluanid	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tribenuron-methyl	μg/l	0,10	<0,03	DIN 38407-36;2014 ~
Triclopyr	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Triflusulfuron-methyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Tritosulfuron	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Chloridazon-desphenyl (B)	µg/l	3,00	<0,03	DIN 38407-36:2014 ~
Chloridazon-methyl-desphenyl	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
(B-1)				
Chlorthalonil-Säure (R611965)	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
Chlorthalonil-Sulfonsäure (Chlorthalonilamidsulfonsäure R 417888)	µg/l	3,00	<0,03	DIN 38407-35:2010 ~
Chlorthalonil - R471811 (M4, R7, SYN548766)	µg/l	3,00	0,12	DIN 38407-35:2010 ~
Flufenacet-Sulfonsäure (Flufenacet ESA, FOE Sulfonsäure, M2)	µg/l	1,00	<0,03	DIN 38407-35:2010 ~
2,6 Dichlorbenzamid	μg/l	3,00	<0,03	DIN 38407-36:2014 ~
Aminomethylphosphonsäure (AMPA)	µg/l	3,00	<0,03	ISO 21458:2008 ~
Metolachlorsäure (OA, CGA 351916, CGA 51202)	µg/i	3,00	<0,03	DIN 38407-35:2010 ~
Metolachlorsulfonsäure (CGA 380168/354743)	µg/l	3,00	<0,03	DIN 38407-35:2010 ~
Metolachlor-NOA 413173	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
N,N-Dimethylsulfamid	µg/l	1,00	<0,03	DIN 38407-35:2010 ~
Metribuzin-Desamino	μg/l	0,30	<0,03	DIN 38407-36:2014 ~
Metazachlorsulfonsäure (BH 479-8)	μg/l	3,00	<0,03	DIN 38407-35:2010 ~
Metazachlorsäure (BH 479-4)	µg/l	3,00	<0,03	DIN 38407-35:2010 ~
2-Amino-4-methoxy-6-methyl-1,3,5-tria (CGA 150829)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Atrazin-Desethyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Atrazin-Desisopropyl	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Desethyl-desisopropyl-atrazin (DACT)	µg/l	0,10	<0,03	DIN 38407-36:2014 ~
Isoproturon-Desmethyl	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Dimethachlorsäure (CGA 50266)	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlorsulfonsäure (CGA 354742)	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor-CGA 373464	µg/l	0,10	<0,03	DIN 38407-35:2010 ~
Dimethachlor-CGA 369873	μg/l	0,10	0,08	DIN 38407-35:2010 ~
Propazin-2-Hydroxy (2-Hydroxy-propazin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin-Desethyl (Desethylterbuthylazin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~

ITU INSTITUT FÜR TRINKWASSERUNTERSUCHUNG GMBH

DR. MED. MILO HALABI MAG. MAG. RER. NAT. FRANZ ZWINGLER

Chemisch-physikalische Analyse Prot. Nr. 2508140-03

Terbuthylazin-2-Hydroxy-Desethyl (Desethyl-2-hydroxy-terbuthalyzin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
Terbuthylazin-2-Hydroxy (2-Hydroxy-terbuthylazin)	μg/l	0,10	<0,03	DIN 38407-36:2014 ~
3,5,6-Trichlor-2-Pyridinol (TPC)	μg/l	0,10	<0,03	DIN 38407-35:2010 ~
Summe Pestizide	μg/l	0,50	0,08	Berechnet (> BG)

Allgemeine Hinweise:

- Ein allfällig zum Einsatz kommender Probenahmeplan wird gemäß DOK Probenahmeplane umgesetzt,
- Parameterwert entspricht lt. Trinkwasserverordnung einem Grenzwert, der Indikatorwert entspricht einem Richtwert.

 Bei den mit *), °), ~) oder ^) nach der Methode versehenen Parametern handelt es sich um bei ITU nicht akkreditierte Methoden. Die Analytik erfolgt in für diese Methoden akkreditierten Partnerlabors. Für die mit **) nach der Methode versehenen Parametern sind auch die Partnerlabors nicht akkreditiert.
- Für überbrachte Proben gilt, dass die Proben wie erhalten analysiert werden. Für Herkunft, Probenahme, Konservierung und Transport der Proben wird in diesen Fällen keine Haftung übernommen.
- Die Beurteilung der Ergebnisse bezieht sich nur auf die vorliegenden Parameter. Eine Vervielfältigung ist nur mit Zustimmung der ITU erlaubt,
- Messunsicherheit: es wird gemäß ILAC G8 4.2.1 die binäre Entscheidungsregel angewendet.